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A class of continuous functions is defined, and the best uniform rational
approximations to these functions are then given explicitly. From these general
results, we recover some particular ones on best uniform polynomial and rational
approximations previously given by Bernstein, Boehm, and Rivlin.

1. INTRODUCTION

Letf(x) be a continuous function on the interval [-1,1], and Vm.n the set
of all rational functions of the form

rem, n; x) = Pm(x)jqn(x), (l.l)

where Pm(x) and qix) are polynomials of degree ~m and ~n, respectively.
We define

Em.n(j) = inf sup I f(x) - rem, n; x)j.
Vm •n XE[-l.l]

(1.2)

For every pair of nonnegative integers m, n, it is well known that there
exists a unique rational function r*(m, n; x) in Vm.n such that

Em n(j) = max I f(x) - r*(m, n; x)1
• XE[-l.l]

(1.3)

(see Achieser [1], Chap. 2). r*(m, n; x) is called the rational function of
"best uniform approximation" to f(x) on [-1,1] with respect to Vm •n •

Let us now denote by f(m, n; x) a rational function of the form (l.l) whose
highest coefficients ofPm(x) and qn(x) are nonzero. We then have the following
characterization of the best uniform rational approximation.

LEMMA l.l. f(m, n; x) is the best uniform rational approximation to f(x)
with respect to Vm+u.n+v if and only if the difference f(x) - f(m, n; x) attains
its extreme values alternately in at least (m + n + 2 + t) points, where
o~ u, v ~ t.
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This result follows directly from a theorem due to Chebyshev (see
Achieser [1], Chap. 2).

There are very few examples of functions f for which r*(m, n; x) and the
maximum error Em.nU) can be given explicitly (see Achieser [1], p. 66, and
Boehm [2]). The purpose of this paper is to obtain r*(m, n; x) and Em .n

for a certain class of continuous functions which we shall define in Sec. 2.
The main results in Sees. 3 and 4 can be considered as extensions of some
results for polynomial and rational approximations given by Rivlin [5],
Bernstein (see Golomb [3]), and Boehm [2].

2. A CLASS OF CONTINUOUS FUNCTIONS

We shall begin with some definitions.

DEFINITION 2.1. Let a be any integer and t be any real or complex
number such that I t I < 1. For 0 E [0, 7T], we define a function o(a, t; 0) by

o(a, t; 0) = i log[(teiao - 1)/(t - eiaO)], (2.1)

where we choose that branch of the logarithmic function so that o(a, t; 0) = °
and o(a, t; 7T) = a7T.

The function o(a, t; 0) has the following properties.

LEMMA 2.1. (i) o(a, t; 0) is a continuous function in [0, 7T], (ii) o(a, t; 0) =
o(a, 1; 0), (iii) 0 is real for all 0 in [0,7T] when t is real.

Proof Since I t I < 1, o(a, t; 0) has no singularities in [0,7T], hence it is
a continuous function. (ii) and (iii) can be obtained directly from (2.1).

DEFINITION 2.2. Let TI be a set of I real or complex numbers {tl , t2 , ... , t l}

satisfying the conditions

(i) I t s I < 1, for s = 1(1)/,

(ii) if t s is complex, then ts+l = 1s •

To each t s in TI , we associate a number E s where E s is either +1 or -1.
We let 1:1 denote the set {E1 , E2 , ... , EI} with the restriction that if t s is complex
then Es+l = Es • When I = 0, TI and 1:1 are taken to be null sets.

To each ts in TI , we also associate a set of integers {ai.s} which may be
finite or infinite. If t s is complex, then we shall impose the condition that
the set {ai.S+l} is the same as the set {ai.s}. We shall denote by A the set of
integers {ai.s} taken over allj and all s.
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DEFINITION 2.3. For 8 E [0, 7T], we define the function LJ;(A, T/ , };/ ; 8)
by

/

LJ;(A, T/ , };/ ; 8) = L Eso(a;.s, ts ; 8).
s=1

(2.2)

In places where no confusion occurs, we shall write LJ u for LJ;(A, Tl ,};/ ; 8).

LEMMA 2.2. LJ u has the following properties:

(i) LJ u is a real continuous function of 8 on [0, 7T].

(ii) LJ;(A, T/ , };/ ; 0) = °and LJ;(A, T l , };l ; 7T) = L:;=1 EsO;,s7T.

Proof follows directly from Lemma 2.1.

DEFINITION 2.4. For any integer k, we define a real function
Fk(A, Tl,};l ; x) on [-1, 1] by

where x = cos 8.
These functions can be looked upon as generalizations of the Chebyshev

polynomials of the first kind. For when I = 0, Fk(A, To, };o ; x) = T1kiCx).
It is worth noting that although we have introduced Fk(A, T l , E l ; x) as in
(2.3), this class of functions has also been used by other authors under
different notations (see, for example, Meinardus [4], p. 38). We shall now
obtain some properties of FiA, T/, };l ; x).

LEMMA 2.3. FiA, Tl , };/ ; x) attains its extreme values of ±1 alternately
in at least (1 + Ik + .L:Ll Esa;.s I) points of [-1, 1].

Proof As 8 varies from ° to 7T, {k8 + LJ u } takes all values in
[0, (k + L:;=1 Esa;,s)7T], since LJ/,; is a continuous function of 8 in [0, 7T].
The result follows immediately.

LEMMA 2.4. Fk(A, Tl,};l ; x) is a quotient of two polynomials of degree
(I k 1+ L:~=1 Ia;,s I) and (L:;=1 1a;.s I), respectively.

Proof We can assume without loss of generality that Es = +1 for
s = 1(1) 11 and -1 for s = (11 + 1)(1)(1). Then Fk(A, Tl,};l ; x) can be
written in the form
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On multiplying both the numerator and denominator by the complex
conjugate of the latter, we observe that the right-hand side is a quotient of
two polynomials of degree (I k I + :L:~1 Iai,s I) and (:L:~1 Iai,s I), in cos 0,
respectively.

We are now ready to introduce a special class of continuous functions.
Let {ki};:o be a subsequence of nonnegative integers and A = {Ai};:o be any
sequence of arbitrary numbers such that :L';:o I Ai I is finite. We define a
functionf(A, T! , 1:! , A; x) by

00

f(A, T! , 1:! , A; x) = L AiFklA, T! , 1:! ; x),
i~O

and obtain the following result.

(2.4)

LEMMA 2.5. f(A, T!, 1:!, A; x) is continuous on [-1, 1].

Proof Since 1Fk/A, T! , 1:! ; x)1 ::s;; 1 for every x E[-1, 1] and :L';:o I Ai I
is finite, the series :L';:o AiFkl(A, T! , 1:1 ; x) converges uniformly on [-1, 1].
Hence, f is a continuous function.

We shall now obtain an extension of a result by Rivlin [5], using appro­
priate choices of the sets A, 1:! and the sequences {Ai}, {ki}.

3. A GENERALIZATION OF A RESULT DUE TO RIVLIN

Let ai,s = a., for s = 1(1)/ and allj, so that A is a finite set of / integers.
Also, let €s = +1, for s = 1(1)/, and Ai = yi, where y is a real number
satisfying Iy I < 1. If we choose ki = aj + b, where a, b are positive integers,
a ~ 1 and b ~ 0, then the functionf can be expressed as follows.

LEMMA 3.1.

(3.1)

where Fband Fb- adenote Fb(A, T1 , 1:1 ; x) andFb_iA, T! , 1:! ; x), respectively.

Proof From (2.4), we have

co

f = L yiFai+b(A, T!, 1:1 ; x),
i=O

which can be written as

f = Re lei[bO+L1 z,l] f (yeiaO)il.
I )~o \

Identity (3.1) is then obtained by summing the infinite series.
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For any nonnegative integer p, we define the function f,p(A, T1, E! , A; x)
by

11. y11+2
f11(A, T1 , E!, A; x) = I y'Fai+b +1=2Fa11+b . (3.2)

i=O Y

THEOREM 3.1. Let as be positive integers such that :L~-1 as ~ a-I, and
let n be any integer satisfying

I

I as ~ n ~ a - 1.
s=1

Let m be any nonnegative integer, and suppose p is such that

!

ap + b + I as ~ m ~ a(p + 1) + b - 1.
s=1

(3.3)

(3.4)

ThenfiA, T1 , E!, A; x) is the best uniform rational approximation r*(m, n; x)
tofand

(3.5)

Proof Let us write

Then

on summing the series. Hence

(3.6)

where E!+l = +1, t!+l = y, and a!+l = a.
From Lemma 2.3, the function Fa11+b(A, T!+1 , E!+l ; x) attains its extreme

values ±1 alternately in at least (ap + b + :L~=1 as + a + 1) points. Also,
fIlA, T!, E 1 , A; x) is a rational function of the form reap + b + :L:-l as,
:L~=1 as; x). Thus, by Lemma 1.1, f11 is the best uniform rational approxi­
mation r*(ap + b + :L:=1 as + u, :L:=1 as + v; x) to f, where 0 ~ u,
v ~ a - :L:=1 as - 1. By putting

!

m = ap + b + I as + u
s=1

and
1

n = I as + v,
s=1
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the conditions (3.3) and (3.4) follow. We have

I y IP+l
Em n(f) = max I E(X)I = -1--2 .

. "'E[-1,1] - Y
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COROLLARY. The results in Theorem 3.1 can be readily extended to the
case of the function (ex + (3f), where ex and {3 are two arbitrary (real or complex)
constants.

Comment. If 1=0; a, b are two integers such that a:;;: 1, b :;;: °and
I y I < 1, then

(3.7)

Let n be an integer satisfying °~ n ~ a - 1 and m be any given non­
negative integer, then r*(m, n; x) is a polynomial of degree (ap + b), where p
is such that ap + b ~ m ~ a(p + 1) + b - 1.

(3.8)

(3.9)

In particular, when n = 0, r*(m, 0; x) = Pm*(x), Em,o(f) = Em(f), and
we obtain precisely Riv1in's result [5] for the case of polynomial approxi­
mation.

4. A GENERALIZATION OF A RESULT DUE TO BERNSTEIN

Let I be an even integer, E. = +1 for s = 1(1)(1/2) and E. = -1 for
s = (112 + 1)(1)(/). Let {kj}j:o be such that the ratios ki+1lkj , j = 0, 1,2,...,
are odd integers >(21 + 1). Furthermore, we choose aj,. = k j ,for s = 1(1)/,
j = 0,1,2,..., and let {,\}j:o be a sequence of nonnegative real numbers such
that :t;:o Aj is finite. For any nonnegative integer p, we define the function
fiA, T! , };! , A; x) by

p

fp(A, T! , };! , A; x) = L AjFk;(A, T! , };! ; x).
j~O

(4.1)

THEOREM 4.1. Given two nonnegative integers m, n, suppose p is such that

(I + 1) k p ~ m ~ k p +1 - Ikp - 1,

and (4.2)
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ThenfzlA, T z , E z , A; x) is the best uniform rational approximation r*(m, n; x)
to land

00

Em.n(f) = L Aj •

j=P+l

Proof Let us write

€(x) = f(A, T z , Ez , A; x) - f~(A, Tz , Ez , A; x),

00

= L AjFklA, Tz , E z ; x).
j=p+l

(4.3)

We want to consider the values of €(x) at (kp+l + 1) points Xq of [-I, 1],
where

Then,

But from Definition 2.1, we have

(
qk· ) qk·o(kj , ts ; Bq ) = 0 ~,ts; 7T =~ 7T.
p+l p+l

This is independent of s, so that

Hence,

as k j lkp+l is an odd integer whenever j > (p + 1). Thus, €(x) attains
its extrema alternately in at least (kp+l + 1) points in [-1, 1]. From
Lemma 2.4, we find that liA, Tz , Ez , A; x) is a rational function of the
form r((l + 1) kp , Ikp ; x). By using the result of Lemma 1.1,lp is the best
uniform rational approximation r*((l + 1) kp + U, Ikp + v; x) to f, where
o :s;; U, v:S;; kp+1 - (21 + 1) kp - 1. We now put m = (l + 1) k'P + u,
n = lk'P + v, and obtain the conditions (4.2) for p.
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Comments.

(i) When / = 0, the Chebyshev series

f(A, To, 1:0 , A; x) = L AjTklx)
j~O
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(4.4)

has its truncated series j,iA, To , 1:0 , A; x) of degree p as its best uniform
rational approximation r*(m, n; x) if p satisfies k p ~ m ~ kp+l - 1 and°~ n ~ kp+l - 1. In particular, when n = 0, we obtain a result for the
best uniform polynomial approximation given by Bernstein (see Golomb [3],
p. 163).

(ii) As a special case of Theorem 4.1, choose k j = abj, where a is a
positive integer and b is an odd integer >(2/ + 1). We obtain a result which
can be considered as an extension ofa result due to Boehm [2] who considered
essentially the case / = 0.

(iii) We now choose k j = aj, where a is an odd integer >(2/ + 1), and
Aj = yj, where y is a real number satisfying °< y < 1. When / = 0,
f(A, To, 1:0 , A; x) is then the well-known Weierstrass function (see Achieser
[1], p. 66). Putting n = 0, we obtain its best uniform polynomial approxi­
mation.
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